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1. Redshift and Hubble Constant

1.1 Redshift due to the recessional veloc-

ity
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From homogeneity and isotropy of any expanding

universe, one can show that the recessional veloc-

ity vB of the (galaxies) photon at P observed by

observer B is the same as the recessional velocity

vA of the photon at the same direction observed

by observer B, namely:

vB(r′, t) = vA(r′, t). (1.1)

Assume there is a small relative velocity of B

frame, vA(r′′, t) < c, as seen from the A frame

along the radius vector r′′ = r − r′. Therefore

the velocity vA(r′, t) can be expressed as:

vB(r′, t) = vA(r, t)− vA(r′′, t) = vA(r′, t) .

Therefore,

vA(r′, t) = vA(r, t)− vA(r′′, t) , (1.2)

r′ = r− r′′ (1.3)

is true for every point P in any isotropic and

homogeneous space. This hence implies that:

vA(r, t) = f(t)r . (1.4)

Namely, the velocity-distance ratio is a constant

in r.

Redshift z of the photon spectrum from dis-

tant universe at distance r due to the recessional

velocity v of the photon field is related by:

1 + z =

√
1 + v/c

1− v/c
. (1.5)

Hence we can show that

v/c ∼ z (1.6)

for v � c. For any expanding space with the

relation

v = H0r, (1.7)

the redshift can be shown to follow the relation:

z ∼ H0
r

c
(1.8)

1.2 Lorentz Transformation

The Lorentz transformation is given by

x′a = Λabx
b , (1.9)

with

( Λ )ab =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

 (1.10)

for two reference frames moving apart with ve-

locity v and β = v/c.
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In fact all 4-vectors Aa transform as xa =

(ct, x), namely,

A′a = ΛabA
b . (1.11)

For example, the 4-momentum vector ka = (ω/c, k)

is also a 4-vector derived from the identity ka =

i∂a = i(∂t/c,∇i) = (ω/c, −k). This also follows

from the fact that the plane wave phase factor

takes the form exp[−ikaxa]. Therefore

k′a = Λabk
b . (1.12)

Hence k′ = γ(−βω/c+ k) with k the momentum

3-vector in x-direction. This leads to the result

k′ = kγ(1− β) = k

√
c− v
c+ v

, (1.13)

following from the fact that c = ω/k. Note that λ

is the wavelength of the photon in the source rest

frame. λ is the photon wavelength in observer’s

rest frame. Note that

1 + z ≡ λobs
λsource

=
λ′

λ
=

k

k′
. (1.14)

Hence the identity of red-shift formula follows:

1 + z =

√
1 + v/c

1− v/c
. (1.5)

1.3 Redshift due to the Recessional Veloc-

ity relative to R(t)

For an expanding universe with a scale factor

R(t), we can define a dimensionless parameter

a(t):

a(t) =
R(t)

R0
. (1.15)

We will show in a moment that the peculiar ve-

locity and its associated momentum of any mat-

ter field in the FRW space is proportional to

1/R(t). p ∼ 1/R is also true for photon field.

Hence the wavelength of the photon source λ =

h/p ∼ R obeys the relation:

λ0
R0

=
λ

R(t)
. (1.16)

In addition, a can be expanded as:

a(t) = 1− ȧ0(t0 − t) (1.17)

by assuming the expansion rate is small. Ex-

act relation will be shown later when we start

to solve the gravitational field equations in the

FRW space with various matter fields incorpo-

rated in a consistent manner.

From the definition of z

z =
λ0 − λ
λ

=
1

a
− 1 ,

one can show that

z ∼ ȧ0
r

c
, (1.18)

with the expansion coefficient ȧ0 related to the

Hubble parameter H0:

ȧ0 =
Ṙ0

R0
= H0 . (1.19)

This shows that the definition of redshift (1.5)

agrees with the definition 1+z = 1/a(t) = R0/R(t).

2. Cross section

Cross section is the area of the effective col-

lisional impact. For a classical atom with Bohr

radius a0, the cross section

σ = π(2a0)2 , (2.1)

a0 =
h̄

α mec
,

α =
e2

(4πε0)h̄c
∼ 1

137
.
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The mean free path l of a interacting particle

is the distance between two effective collisions.

Assuming a particle moving with velocity v can

travel a distance L in time interval t such that

L = vt, σl = Vone−collision. lN = L follows if

there are N particles in the volume V = σL. For

a particle with number density n = N/V , one

can thus show that

l =
1

nσ
. (2.2)

This follows from the fact that:

n =
N

V
=
L/l

σL
=

1

σl
.

Note that [nσ] = [1/L3][L2] = [1/L] gives the

correct dimension for 1/l.

2.1 Interaction Rate

The interaction rate Γ is defined as the number

of interactions in unit time:

Γ = nσv (2.3)

with v the speed of the particle. Another way to

look at this definition is:

Γl = v . (2.4)

Mean free path times the interaction per unit

time is the velocity of the particle. In addition,

the dimension of the interaction rate is:

[Γ] = [
1

L3
][L2][

L

t
] = [

1

t
] (2.5)

which is consistent with its definition.

For example, the photon interaction rate

Γγ = neσT c (2.6)

with σT = 6.65× 10−25cm2 the Thompson cross

section. The cross section of different interac-

tions have to rely on the fundamental quantum

field theories known to most particle physicists.

We will not go into the details of the detailed

derivations. The results will be given. These re-

sults can also be checked out from the well known

data book or any particle physics textbook.

In particular, when Γ > H, particle interac-

tion is still vivid as the interaction rate is greater

than the expansion rate. When Γ < H, particle

interaction will gradually decouple from the heat

bath as we will return to this topic shortly.

3. blackbody radiation

Blackbody radiation assures that all photons are

in thermal equilibrium via collisions with charged

medium and obeys the Planck distribution func-

tion of the form:

Bλ(T ) =
2hc2/λ5

exp[hc/λkT ]− 1
(3.1)

Express Bλdλ = −Bνdν as a distribution func-

tion of the frequency ν, it is apparent that:

Bν(T ) =
2hν3/c2

exp[hν/kT ]− 1
. (3.2)

Counting the dimension:

[Bλ] = [hc2/λ5] =

[
E

tL3

]
(3.3)

is the dimension of the power density. Note that

the energy density is uλdλ = (4π/c)Bλdλ, and

[uλdλ] = [hc/λ4] =

[
E

L3

]
. (3.4)

4. Friedmann-Robertson-Walker met-

ric space
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Homogeneous and isotropic 3-spaces can be

classified into three different classes that can be

parametrized as:

X2 + Y 2 + Z2 +W 2 = A2 (4.1)

X2 + Y 2 + Z2 = B2 (4.2)

X2 + Y 2 + Z2 −W 2 = A2 (4.3)

for a constant scale factor A parameterizing the

radius of the 3-space. B can be arbitrary radius

for the space R3. The first class is a closed space,

the second class is a flat space and the last one

is the open space. It can be parametrized alter-

natively as:

ds23 = gijdx
idxj

= a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dϕ2)

]
,

(4.4)

with r, ϕ and θ ‘comoving’ polar coordinates.

The parameter k is the ‘scalar curvature’ of the

3-space. k = 0, k > 0 or k < 0 correspond to

flat, closed or open universe. The dimensionless

parameter a(t) is the ‘scale factor’ of the universe

normalized by taking a(t) in unit of R0. Equiva-

lently, we are taking R(t) = a(t)R0 ≡ a(t)R(t0).

Here R(t) is the scale factor of the universe and

t0 is the present cosmic time. Hence a0 = 1, i.e.

one unit of R0.

Eq. (4.4) can be proved by parameterizing,

for example, the closed 3-space as;

X = A sinχ sin θ sinϕ, (4.5)

Y = A sinχ sin θ cosϕ, (4.6)

Z = A sinχ cos θ, (4.7)

W = A cosχ. (4.8)

It then follows that

dX2 + dY 2 + dZ2 + dW 2

= A2
[
dχ2 + sin2 χdΩ

]
. (4.9)

This gives the case k = 1 with the parameteriza-

tion r = sinχ. Indeed, dr = cosχdχ, and hence

dr2/ cos2 χ = dχ2 = dr2/(1 − r2). Similarly for

the open space with k = −1 by replacing sinχ

(cosχ) with sinhχ (coshχ).

The four dimensional spacetime in the uni-

verse is then described by the Friedmann-Robertson-

Walker metric

ds2 = dt2 − ds23. (4.10)

5. geodesic equation of a test parti-

cle

For a particle traveling on a metric space given

by:

ds2 = gabdx
adxb , (5.1)

the trajectory will make the length of the trajec-

tory as short as possible. Therefore, the trajec-

tory can be derived from the least action prin-

ciple with action given by the length
∫
ds. It is

also equivalent to varying the Lagrangian given

by

L =

√
gab

dxa

dt

dxb

dt
. (5.2)

The derivation is straightforward:

δL =
1

2L

(
∂cgabδx

cvavb + 2gacv
a d

dt
δxc
)

=
1

2

[
∂cgabu

avb − 2
d

dt
(gacu

a)

]
δxc (5.3)
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after an integration-by-part. Note that ua =

(u0, ui)(= γ(1, vi) for the Minkowski space with

metric gab = ηab) with ua = dxa/ds and va =

dxa/dt. Therefore the field equation leads to:

u̇a +
1

2
gad(∂bgcd + ∂cgbd − ∂dgbc)ubvc

≡ u̇a + Γabcu
bvc = 0 . (5.4)

Note that gab is the inverse of the metric field

satisfying gabgbc = δac. It is also true if we take

another affine parameter λ to replace t:

dua

dλ
+ Γabcu

b dx
c

dλ
= 0. (5.5)

Taking λ as s:

dua

ds
+ Γabcu

buc = 0 (5.6)

This equation is referred to as the geodesic equa-

tion.

5.1 covariant derivative

Note that the geodesic equation can also be writ-

ten as

dua + Γabcu
bdxc

= (∂cu
a + Γabcu

b)dxc = 0 . (5.7)

Hence the geodesic equation becomes

Dcu
a = ∂cu

a + Γabcu
b = 0 (5.8)

with the operator Dcu
a known as the covariant

derivative of any contra-variant vector ua.

Note that the covariant derivative of any co-

variant vector va is

Dcva = ∂cva − Γbcavb . (5.9)

This can also be derived by requiring that

Dc(u
ava) = ∂c(u

ava) , (5.10)

Dc(u
ava) = (Dcu

a)va + ua(Dcva) .(5.11)

Note that the first requirement is demanding that

uava is a 4-scalar. The second requirement is the

Leibniz rule.

Derivative operators ∂c is known as the trans-

lational operators. Indeed, we can write

exp

[
i
P

h̄
(x+ a)

]
= [1 + a∂x] exp

[
i
P

h̄
x

]
.

(5.12)

It is equivalent to parallel transport a phys-

ical observable like a vector vb form one point

to another nearby point. If the space is curved,

parallel transport is defined in conjunction to the

curved geometry. Normal derivative will carry

the vector off its original space and no longer re-

mains a well-defined vector in its original space.

Covariant derivative Dc is therefore designed to

remove off-space component of the transported

vector, namely, Γbcavb from the normal deriva-

tive. After removing unphysical component of

the transported vector, we will be able to de-

fined a new transported vector defined on our

own space time.

By requiring

Dcgab = ∂cgab − Γdcagdb − Γdcbgad (5.13)

as if it is similar to the covariant derivative of

a product of two covariant vectors AaBb. Note

that

Dc(AaBb) = (DcAa)Bb +Aa(DcBb) (5.14)

obeying the Leibniz rule. Then it is straightfor-

ward to show that

Dcgab = 0 (5.15)

which is known as the compatibility condition in

Riemannian geometry. We will come back to the

details of the tensor calculus later in this text.

6. particle horizon and velocity fields

ds2 = 0 for a photon field on the FRW space.

Hence ∫ t

0

dt′

a(t′)
=

∫ rH

0

dr√
1− kr2

. (6.1)

Hence the particle horizon

dH =

∫ rH

0

dr
√
grr (6.2)

can be shown to be:

dH = a(t)

∫ rH

0

dr√
1− kr2

= a(t)

∫ t

0

dt′

a(t′)
. (6.3)
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Writing in conformal coordinate:

ds2 = gabdx
adxb

= a2(η)

[
dη2 − dr2

1− kr2
− r2(dθ2 + sin2 θ dϕ2)

]
,

(6.4)

we can write the proper distance as

dH = a(t)(η(t)− η0). (6.5)

6.1 Peculiar Velocity

Peculiar velocity is defined as the velocity with

respect to the co-moving frame. Therefore the

peculiar 4-velocity ua = dxa/ds obeys the geodesic

equation:

dua

dλ
+ Γabcu

b dx
c

dλ
= 0 (6.6)

with λ some affine parameter. Note that ua =

(u0, ui) = γ(1, vi) with vi = dxi/dt the 3-velocity.

The 0-component geodesic equation reads:

du0

ds
+ Γ0

bcu
buc = 0, (6.7)

du0

ds
+Hu2 = 0. (6.8)

Eq. (6.8) can also be derived directly from the

pre-arranged geodesic equation (5.3)

∂tgabu
avb − 2

d

dt
(gatu

a) = 0 . (6.9)

Indeed, it reproduces: 2(Hu2 + du0/ds) = 0.

From the fact that u0
2−|u|2 = 1, hence u0du0 =

u · du, for any matter field, one can derive

du

u0ds
+Hu = 0 (6.10)

with u ≡ |u|. Note that u0ds = dt following the

definition of u0. Therefore, the geodesics equa-

tion gives

u̇

u
= −H = − ȧ

a
. (6.11)

This implies immediately that

u =
p

m
∝ 1

a
→ 0 (6.12)

at time infinitive for any expanding universe. Note

that p ∝ 1/R is also true for photon field. Hence

we reach the conclusion that the photon wave

length is proportional to the scale factor R(t) or

a(t).

λ ∼ h

mu
∼ a(t). (6.13)

Hence the redshift can be defined also as 1 + z =

a0/a as mentioned earlier.

6.2 luminosity distance

The flux distribution Fλ has a dimension given

by [F ] = [L/A] = [E/tL2]. It is a power per unit

area. Equivalently, the flux follows

Fλdλ =
Lλdλ

4πr2
= Bλdλ

R2

r2
(6.14)

for a radiation source with Bλ radiating from the

source sphere with radius R. r given above is the

distance from the radiation source to the detec-

tor. For an expanding universe, the radiation

source far away is red-shifted by a factor 1 + z.

There is another redshift factor a + z represent-

ing the power received by the detector due to the

time-lag effect derived from [F ] = [dE]/[A][dt].

Therefore, the flux received by the detector will

be:

F =
L

4πd2L
=

L

4πr2(1 + z)2
. (6.15)

dL = r(1+z) is known as the luminosity distance.

For a power Bλdλ emitted with an angle θ to the

detector, the total luminosity Lλdλ will be:

[Lλdλ] = [Bλdλ][dA cos θ][dΩ]. (6.16)

Therefore,

Lλdλ =

∫ 2π

0

∫ π/2

0

∫
A

[Bλdλ][dA cos θ][dΩ]

= 4πR2Bλdλ (6.17)
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with R the radius of the radiation source sphere.

In addition, ∫ ∞
0

Bλdλ =
σ

π
T 4 , (6.18)

with

σ =
2π5k4

15c3h3
. (6.19)

7. Hubble’s law

The proper distance is given by

dH = a(t)

∫ r

0

dr

(1− kr2)1/2
· (7.1)

We will write dH = a(t)r, for a flat universe

(k = 0), with r a ‘comoving’ and dH a physical

vector in 3-space. Hence the velocity of an object

is

V = ḋH =
ȧ

a
dH + a

dr

dt
, (7.2)

with over-dots denoting derivation with respect

to cosmic time. The second term in the right

hand side (RHS) of this equation is the ‘peculiar

velocity’, v = a(t)r, of the object. It is the ve-

locity with respect to the ‘comoving’ coordinate

system. For v = 0, Eq.(7.2) reads

V =
ȧ

a
dH ≡ H(t)dH , (7.3)

with H(t) ≡ ȧ(t)/a(t) the Hubble constant. This

is the well-known Hubble law claiming that ev-

erything runs away from each other with velocity

proportional to their distances.

8. Conservation Law of the perfect

fluid

Homogeneity and isotropy of the universe imply

that the energy momentum tensor takes the di-

agonal form

(T ab) = diag(ρ,−p,−p,−p) , (8.1)

with ρ the energy density of the universe and p

the pressure. Energy momentum conservation

DaT
a
b = 0 (8.2)

can be expressed as the continuity equation

dρ

dt
= −3H(t)(ρ+ p) , (8.3)

where the first term in the rhs describes the di-

lution of the energy due to the expansion of the

universe and the second term corresponds to the

work done by pressure. Eq.(8.3) can be given the

following more transparent form

d

(
4π

3
a3ρ

)
= −p 4πa2da , (8.4)

which indicates that the energy loss of a ‘comov-

ing’ sphere of radius ∝ a(t) equals the work done

by pressure on its boundary as it expands.

Note that Eq. (8.4) can be interpreted as a

thermal dynamical equation:

dU = −pdV +
dS

T
, (8.5)

with U = ρV , V = 4πa3/3, S the entropy and

T the temperature of the thermal dynamical sys-

tem. dS = 0 for a closed system without energy

loss to its environment. Note that dS/T = d̄Q.

Also note that the volume of the 3-sphere S3

is 2π2a3 instead of 4πa3/3. This follows from the

metric element shown in Eq. (4.9):

ds2 = a2
[
dχ2 + sin2 χdΩ

]
. (8.6)

The volume of the 3-sphere is∫ π

0

dχ

∫ π

0

dθ

∫ 2π

0

dϕ
√
g (8.7)

with
√
g = a3 sin2 χ sin θ. The integral can be

shown directly to give 2π2a3. Hence the New-

tonian approach can not taken seriously at this

point.

9. Friedmann Equation

For a universe described by the Robertson-Walker

metric in Eq.(4.10), Einstein’s equations

R b
a −

1

2
δ ba R = 8πG T b

a , (9.1)

where R b
a and R are the Ricci tensor and scalar

curvature tensor and G ≡ M−2P is the Newton’s

constant, lead to the Friedmann equation

H2 +
k

a2
=

8πG

3
ρ (9.2)

with H ≡ ȧ(t)/a(t) the Hubble parameter.
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Writing the equation in the form:

1

2
mȧ2 −mG

(
4π

3
a3
)
/aρ = −mk

2
, (9.3)

one can read this equation as the Newtonian en-

ergy conservation law for a test particle m mov-

ing under the gravitational attraction due to a

sphere of uniform mass density ρ and radius a:

T − V = −mk

2
. (9.4)

The velocity ȧ is the escape velocity for the case

k = 0. On the other hand, the system is a bound

state for k > 0. The test particle will escape

when k > 0.
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